Temporal and Cross-Subject Probabilistic Models for fMRI Prediction Tasks
نویسندگان
چکیده
We present a probabilistic model applied to the fMRI video rating prediction task of the Pittsburgh Brain Activity Interpretation Competition (PBAIC) [2]. Our goal is to predict a time series of subjective, semantic ratings of a movie given functional MRI data acquired during viewing by three subjects. Our method uses conditionally trained Gaussian Markov random fields, which model both the relationships between the subjects’ fMRI voxel measurements and the ratings, as well as the dependencies of the ratings across time steps and between subjects. We also employed non-traditional methods for feature selection and regularization that exploit the spatial structure of voxel activity in the brain. The model displayed good performance in predicting the scored ratings for the three subjects in test data sets, and a variant of this model was the third place entrant to the 2006 PBAIC.
منابع مشابه
Temporal and Cross-Subject Probabilistic Models for fMRI Prediction Tasks
We present a probabilistic model applied to the fMRI video rating prediction task of the Pittsburgh Brain Activity Interpretation Competition. Using a Dynamic Gaussian Markov Random Field, we model the relationship between the subjects’ fMRI voxel measurements and the rated properties of the videos, such as presence of language or subject amusement. Also included in our model are dependencies o...
متن کاملUsing functional magnetic resonance imaging (fMRI) to explore brain function: cortical representations of language critical areas
Pre-operative determination of the dominant hemisphere for speech and speech associated sensory and motor regions has been of great interest for the neurological surgeons. This dilemma has been of at most importance, but difficult to achieve, requiring either invasive (Wada test) or non-invasive methods (Brain Mapping). In the present study we have employed functional Magnetic Resonance Imaging...
متن کاملUsing functional magnetic resonance imaging (fMRI) to explore brain function: cortical representations of language critical areas
Pre-operative determination of the dominant hemisphere for speech and speech associated sensory and motor regions has been of great interest for the neurological surgeons. This dilemma has been of at most importance, but difficult to achieve, requiring either invasive (Wada test) or non-invasive methods (Brain Mapping). In the present study we have employed functional Magnetic Resonance Imaging...
متن کاملImproving the Performance of ICA Algorithm for fMRI Simulated Data Analysis Using Temporal and Spatial Filters in the Preprocessing Phase
Introduction: The accuracy of analyzing Functional MRI (fMRI) data is usually decreases in the presence of noise and artifact sources. A common solution in for analyzing fMRI data having high noise is to use suitable preprocessing methods with the aim of data denoising. Some effects of preprocessing methods on the parametric methods such as general linear model (GLM) have previously been evalua...
متن کاملBrain Activity Map Extraction of Neuromyelitis Optica Patients Using Resting-State fMRI Data Based on Amplitude of Low Frequency Fluctuations and Regional Homogeneity Analysis
Introduction: Neuromyelitis Optica (NMO) is a rare inflammatory disease of the central nervous system which generally affecting the spinal cord and optic nerve. Damage to the optic nerve can result in the patient's dim vision or even blindness, while the spinal cord damage may lead to sensory and motor paralysis and the weakness of the lower limbs in the patient. Magnetic Reson...
متن کامل